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Abstract

A theory of laminated electroelastic bars with layers arranged symmetrically about the middle plane of the bar is constructed.
Particular attention is given to the influence of the electrical conditions on the faces of the piezoelectric layers on the equations of
the theory of bars. Formulae are obtained which, after solving the problem of a laminated bar, enable one to transfer from one-
dimensional required quantities to three-dimensional required quantities. As an example, the vibrations of a three-layer electroelastic
bar are considered, the displacements, stresses and electrical quantities are calculated, and the dependence of the electromechanical
coupling coefficient on the frequency of the vibrations and the thicknesses of the elastic and piezoelectric layers is investigated.
© 2007 Elsevier Ltd. All rights reserved.

Piezoelectric laminated bars have been considered in many papers (see Refs 1–5), among which is the review Ref
5. However the problems of choosing correct hypotheses for constructing a theory of bars and methods of calculating
the efficiency of bars as energy converters remain to be solved.

1. Formulation of the problem

A laminated bar with elastic and piezoelectric layers placed symmetrically about the middle plane of the bar is
considered. The piezoelectric layers can be made of piezoceramics or piezofilm. A cross section of the bar in Cartesian
coordinates and the electrical load are presented schematically in Fig. 1.

The bar of the length l consists of 2N layers if the middle plane coincides with the contact plane of the layers, and
2N − 1 layers when the middle plane coincides with the middle plane of one of the layers, which will be called the
central layer. In the latter case, to obtain 2N layers we partition the central layer into two layers, the upper layer having
the number 1, and the lower one the number −1. The layers are numbered from the middle plane of the bar to the upper
face from 1 to N and from the middle plane of the bar to the lower face from −1 to −N; the thickness of the layers
with numbers k and −k is hk. The bar is referred to Cartesian coordinates; the x1 axis is directed along the length of
the bar, the x2 axis is directed along the width and the x3 axis is orthogonal to them.

It is assumed that the piezoelectric layers are prepolarized in the x3 direction. As in the theory of elastic bars, the
stresses �22 and �33 in the constitutive relations for piezoelectric bars can be neglected compared with the stress �11,
and we can assume that the electroelastic state does not depend on the x2 coordinate.

The equations for the elastic and electroelastic layers can be written, in view of the above assumptions, as follows:
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Fig. 1.

the equations of motion

(1.1)

the stress - strain formulae

(1.2)

constitutive relations for the elastic layers (Hooke’s law)

(1.3)

and the constitutive relations for piezoelectric layers

(1.4)

(1.5)

where

(1.6)

In formulae (1.1)–(1.6) u1 and e1 are the displacement and strain in the x1 direction, E3 and D3 are the components
of the electrical field vector and electrical induction vector in the x3 direction, sE11 is the elastic compliance for zero
electric field, d31 is the piezoelectric constant, �T

33 is the permittivity for zero stresses, and � is the electric potential.
The notation used is the same as that employed previously.6 The superscript in parentheses denotes the number of the
layer.

The mechanical surface load on the faces of the bar are specified in the usual way

(1.7)

If there are no electrodes on the surfaces of the bar and the layer on these surfaces is in contact with a non-conducting
medium (say, either insulating glue or a vacuum or air), the component of the electric induction vector D3 normal to
these surfaces equals zero:

(1.8)

If the surfaces of the electroelastic layer are covered by electrodes and the electric potential on the electrodes is
specified, the boundary conditions on the electrode-covered surfaces have the form

(1.9)
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On the short-circuit electrodes the electric potential is equal to zero

(1.10)

If the electrodes are closed by an electric circuit with known complex admittance Y = Y0 + iY1, then

(1.11)

On open-circuit electrodes the following integral condition is satisfied

(1.12)

where I is the magnitude of current.

2. The construction of a theory of bars

In order to construct a theory of piezoelectric bars some assumptions regarding the electrical quantities must be
made. As when constructing a theory of piezoelectric shells and plates,6 the content of the accepted hypotheses depends
on the electrical conditions on the faces of the piezoelectric layers.

For piezoelectric layers we will make the following assumptions, which were justified previously by an asymptotic
method for single-layer electroelastic plates and shells.6

1◦. For a piezoelectric layer with the electrode-covered faces the component D3 of the electric induction vector normal
to the surfaces does not depend on the thickness coordinate x3

(2.1)

2◦. The electric potential � both for the layer with electrodes on the faces and for the layer without electrodes is a
quadratic function of the thickness coordinate x3

(2.2)

3◦. For the electroelastic layer without electrodes the following strong inequality is satisfied

In line with Assumption 3◦, Eq. (1.5) for the layer without electrodes can be rewritten in the form

(2.3)

If the electric potential on the electrodes is given by (1.9), formula (2.2) can be transformed to the form

(2.4)

Here and henceforth the superscript (k) k takes the values −N, . . . , −2, −1, 1, 2, . . . , N, while the superscript k with
a double sign (±k) takes only positive integer values 1, 2, . . ., N.
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Taking relations (2.4) and (1.6) into account, we obtain

(2.5)

where

(2.6)

For the mechanical quantities of any layer Kirchhoff’s hypotheses hold, and they can therefore be written in the
form of the following linear functions of x3

(2.7)

(2.8)

Here � and � are the components of the tangential and bending strains of the middle line of the bar, u and w are the
tangential displacement and deflection of the points of the middle line respectively, and u1,1 is the angle of rotation of
an element normal to the middle line.

Taking into account formulae (2.5)–(2.8), the constitutive relations for the k-th piezoelectric layer with electrodes
on the faces can be rewritten in the form

(2.9)

Similarly, the constitutive relations (1.4) for the k-th piezoelectric layer without electrodes on the faces, taking
formulae (2.3) and (2.7) into account, can be written as follows:

(2.10)

and the relations of elasticity for the elastic layer finally take the usual form

(2.11)

Integrating the stresses over the thickness we obtain the resultant tangential force T and bending moment G

(2.12)

After rearrangement, we obtain the following constitutive relations for the theory of laminated electroelastic bars

(2.13)
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Table 1

Notation Elastic layer Piezoelectric layer without electrodes Piezoelectric layer with electrodes

ak E(k) 1/s(k) 1/sE
(k)

11

mk E(k) 1/s(k) 1/sE
(k)

11 + h3
k
(k(k)

31 )
2
/[4(z3

k
− z3

k−1)s(k)]

pk 0 0 d
(k)
31 /sE

(k)

11

Here

(2.14)

The notation employed is shown in Table 1.
The values of the electric potential occur in the formulae defining the quantities P and Q. They are either given or

are found from integral condition (1.11) for an electric circuit with known complex admittance and conditions (1.12)
in the case of open-circuit electrodes.

The equilibrium equations in the theory of laminated electroelastic bars of symmetrical structure have exactly the
same form as in the case of elastic bars

(2.15)

Here N is the shearing force.
The problem under consideration, as well as in the theory of elastic bars, is divided into two problems: the plane

problem

(2.16)

and the problem of the bending of a bar

(2.17)

Here A, M, P, Q, � are the constants defined above. To solve both problems, since they are identical with the cor-
responding problems of the theory of elastic bars, apart from constant coefficients, we will use the well-developed
methods of this theory.

Let us analyse the hypotheses that were used to reduce the three-dimensional problem to a one-dimensional problem
of the theory of bars. It should be emphasized that for piezoelectric layers with electrodes and without them different
theories are used, and as a result different coefficients are obtained in the one-dimensional relations of electroelasticity
(2.13), (2.14). Besides, many authors erroneously assume a linear variation of the electric potential over the thickness
of the bar. However, for a linear variation the quantity E3 is constant

(2.18)
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and the formulae for the stresses of the piezoelectric layer take the form

(2.19)

Substituting relations (2.18) and (2.19) into Eq. (1.5), taking into account the fact that D(k)
3 = D

(k)
3,0(x1) and equating

the coefficients of like powers of x3, we obtain the equalities

the second of which for the bending problem makes no sense. This means that the hypothesis that the electric potential
varies linearly, in general, is incorrect.

3. The change from one-dimensional quantities of the theory of bars to three-dimensional quantities

After solving the problem for an electroelastic bar we must transfer from the one-dimensional required quantities
obtained to three-dimensional quantities – displacements, stresses and electrical quantities.

We recall that in the plane problem �11, �33, �, E3 and D3 are even functions of x3, whereas in the bending problem
the quantities �13 and u are odd functions.

In line with the above, we will represent the mechanical and electrical loads as the sum of even and odd functions
of x3. The even part of the surface load �33 and the odd part of the surface load �13 must be taken into account when
solving the plane problem, while the odd part of the surface load �33, the even part of the surface load �13 and the
electric potential � must be taken into account when solving the bending problem.

3.1. The plane problem

The conditions on the faces of the bar, taking into account the evenness and oddness, can be written in the form

(3.1)

Formulae for the three-dimensional quantities in the region x3 ≥ 0 are written below; formulae for x3 ≤ 0 can be
written by analogy, taking into account the evenness or oddness of the appropriate quantities relative to the middle
plane of the bar.

In the case of the plane problem the electric potential of each piezoelectric layer is a linear function of x3 (�,2 = 0,
since in the plane problem � = 0), and E

(k)
3 does not depend on x3:

(3.2)

The displacement u and the strain � are independent of the x3 coordinate, they are the same for any layer and are
found by solving the one-dimensional problem. Hence the stress �11 and the quantity D3 for any piezoelectric layer
are also independent of x3 and are given by the formulae

(3.3)

If the faces of the electroelastic layer have no electrodes, we can obtain from formulae (3.3) by virtue of Eq. (2.3)

(3.4)
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For the stresses of the elastic layer the usual formula holds, i.e.

(3.5)

In the plane problem we take for the stresses �13 and �33 the following laws of the variation over the thickness of
the bar

(3.6)

We will find the approximate values of the stresses �13 and �33, which satisfy conditions (3.1) on the faces of the
bar and the equations of motion. We obtain

(3.7)

Formulae (3.7) define the stresses as continuous functions, and hence the conditions for the stresses on the contact
surface of the layers to be equal are satisfied automatically.

If necessary, the stresses �13 and �33 can be determined in a higher approximation. To do this the equations of
motion (1.1) must be integrated for each layer separately

(3.8)

and should satisfy conditions (3.1) on the faces of the bar and the conditions for the stresses �33 and �31 to be equal
on the contact surfaces of the layers. As a result we obtain

(3.9)

3.2. The bending problem

The conditions on the faces of the bar and on the electrode-covered surfaces have the form

(3.10)
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We obtain for the piezoelectric layer with electrodes on the faces with a given electric potential

(3.11)

The stresses in the elastic layer can be calculated from the formula

(3.12)

For a piezoelectric layer without electrodes we have

(3.13)

Since the stress �11 in each layer varies linearly with x3, for the stresses �13 and �33 in the bending problem we
take the following laws of variation of the stresses over the thickness of the bar

(3.14)

We can obtain approximate values of the stresses �13 and �33, satisfying conditions (3.10) on the faces of the bar
and the equations of motion, using the formula for the shearing force

As a result we obtain

(3.15)

Formulae (3.15) define the stresses �13 and �33 as continuous functions, and hence the conditions for the stresses
on the contact surfaces of layers to be equal are satisfied automatically. If necessary the stresses �13 and �33 can be
found in a higher approximation. To do this the equations of motion must be integrated for each layer separately (they
differ from Eq. (3.8) only in that ∂2u/∂t2 = 0 in the bending problem), and then the conditions on the faces of each
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layer must be satisfied. As a result we obtain

(3.16)

To derive the last relation we use the formula

For elastic layers we have �
(k)
11,0 = 0.

4. The electromechanical coupling coefficient

Electroelastic elements are used as energy convertors, hence the electromechanical coupling coefficient (EMCC) is
the most important characteristic of their performance.6–9 It was shown in Refs 6–7 that to calculate the EMCC ke one
can use an energy formula, which has the form

(4.1)

where Ud is the internal energy of the electroelastic body when its electrodes are open-circuit, Ush is the inter-
nal energy of the same electroelastic body with short-circuit electrodes and v is the volume of the electroelastic
body. In order to find Ud and Ush, we must first solve the initial problem, then two additional problems, one of
them for the case of open-circuit electrodes and another for short-circuit electrodes, where, when solving these
additional problems, the strains should be considered as known quantities found from the solution of the initial
problem.
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In order to calculate the internal energy of the electroelastic body with open-circuit electrodes the no–current
condition in the open electric circuit is used, namely,

(4.2)

where d� is an element of the surface of one of the electrodes.
The electric potential on the short-circuit electrodes of the piezoelectric layer equals zero

(4.3)

To calculated the EMCC the simple Mason formula9

(4.4)

is often used, where �r is the resonance frequency and �a is the corresponding antiresonance frequency.
Formula (4.4) is suitable both for calculation and for processing experimental results, but it only enables one to

find the EMCC near resonance. The complicated and time consuming formula (4.1) is a universal formula; using it the
EMCC can be calculated for any structure both in statics and dynamics.

5. The vibrations of a three-layer bar

As an example we will consider the harmonic vibrations of a three-layer bar of length l and width g. The upper and
lower piezoelectric layers, made of PZT-5 piezoceramics are arranged symmetricly about the middle elastic layer. The
thickness of the elastic layer is 2h1 and the thickness of each piezoelectric layer is h2. One edge of the bar is rigidly
clamped and another one is free.

5.1. The plane problem (longitudinal vibrations)

It is assumed that only an electrical load exciting longitudinal vibrations acts on the bar:

(5.1)

In the case considered the system of equations of the plane problem (2.16) can be transformed to the following
resolvent

(5.2)

where

(5.3)

the quantities �1 and �2 are the density of the materials of the elastic and piezoelectric layers respectively.
The solution of Eq. (5.2) has the form

(5.4)

From the conditions at the ends of the bar
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we determine the constants of integration

(5.5)

The displacement and strain of the bar are found from the formulae

(5.6)

We have for the stresses and electrical quantities in the piezoelectric layers

(5.7)

and for the stresses in the elastic layer

(5.8)

The stresses �33 and �13 are determined from formulae (3.9), in which the mechanical surface load must be put
equal to zero.

Calculating the EMCC ke from formula (4.1) we obtain

(5.9)

(5.10)

Here v1 and v2 are the areas occupied by the elastic and piezoelectric layers respectively.
Using the no-current condition in the open circuit

(5.11)

where

(5.12)

we find

(5.13)

On the short-circuit electrodes the electric potential and Esh
3,0 are equal to zero:

(5.14)

The stress �11,0 in the elastic layer is determined from formula (5.8).
If the formulae obtained are taken into account, the stresses in the piezoelectric layers can be written as follows:

(5.15)
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Fig. 2.

We substitute expressions (5.12)–(5.15) into relations (5.9), (5.10) and perform the integration

(5.16)

where

and we then find the EMCC from formula (4.1)

(5.17)

Graphs of ke against the dimensionless frequency parameter �1 for different values h1 and h2 are shown in Fig. 2a
(the thick curve corresponds to h1 = 0 and h2 = 1 × 10−3 m; the thin curve corresponds to h1 = h2 = 5 × 10−4 m; the
dashed curve corresponds to h1 = 8 × 10−4 m and h2 = 2 × 10−4 m).

Table 2 gives the values of the first (subscript 1) and second (subscript 2) dimensionless (�) and dimensional (�,
kHz) resonance (subscript r) and antiresonance (subscript a) frequencies and the values of the EMCC kd calculated
using Mason’s formula (4.4) (they are shown in Fig. 2 by the light circles). As in all the other problems considered6,7

the EMCC values determined by formulae (4.1) and (4.4) agree.

Table 2

Frequencies and EMCC h1 = 0, h2 = 10−3 m h1 = h2 = 5 × 10−4 m h1 = 8 × 10−4 m, h2 = 2 × 10−4 m

�r1 (�r, kHz) 1.571 (35.22 kHz) 1.571 (44.49 kHz) 1.571 (54.21 kHz)
�a1 (�a, kHz) 1.651 (37.01 kHz) 1.610 (45.58 kHz) 1.586 (54.73 kHz)
kd1 0.307 0.218 0.137
�r2 (�r, kHz) 4.712 (105.7 kHz) 4.712 (133.5 kHz) 4.712 (162.6 kHz)
�a2 (�a, kHz) 4.740 (106.3 kHz) 4.726 (133.8 kHz) 4.717 (162.8 kHz)
kd2 0.108 0.075 0.046
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5.2. The bending problem

For the complete system of equations of the bending problem

we have the resolvent

and its solution

Satisfying the conditions of rigid clamping at the edge x1 = 0

and the conditions at the free edge x1 = l

we obtain the constants of integration

(5.18)

and the deflection

(5.19)
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We will write the formulae for some of the required quantities

(5.20)

The stresses in the layers are given by formulae (3.11)–(3.16). In order to calculate the EMCC we will use formulae
(4.1) and (4.4). We find Vd

b by satisfying condition (4.2). We obtain

(5.21)

According to condition (4.3)

(5.22)

Using formulae (5.22) we find

(5.23)

where

After simple rearrangement formula (4.1) takes the form

(5.24)
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Fig. 3.

Table 3

Frequencies and EMCC h1 = 0, h2 = 10−3 m h1 = h2 = 5 × 10−4 m h1 = 8 × 10−4 m, h2 = 2 × 10−4 m

�r1 (�r, kHz) 1.875 (2.312 kHz) 1.875 (2.813 kHz) 1.875 (3.441 kHz)
�a1 (�a, kHz) 1.925 (2.440 kHz) 1.930 (2.974 kHz) 1.907 (3.563 kHz)
kd1 0.229 0.237 0.183
�r2 (�r, kHz) 4.694 (14.48 kHz) 4.694 (17.58 kHz) 4.694 (21.53 kHz)
�a2 (�a, kHz) 4.735 (14.74 kHz) 4.740 (17.93 kHz) 4.720 (21.77 kHz)
kd2 0.132 0.139 0.105

Graphs of the EMCC ke against the dimensionless frequency parameter �2 for different thicknesses of the layers,
identical with those used in Fig. 2a, are presented in Fig. 2b.

Fig. 3 shows the dependence of the EMCC on the thickness of the elastic layer, assuming that the total-thickness of
the bar remains constant (the half-thickness h = 10−3 m) for the first (the thick curve) and the second (the thin curve)
resonance frequencies. Calculations show that the maximum value of the EMCC is achieved when h1 = 3.5 × 10−4 m,
and this value does not depend on the frequency of bending vibrations.

The values of the first and second resonance and antiresonance frequencies and the values of the EMCC calculated
from formula (4.4) are given in Table 3, like Table 2.

Here, as in all the other problems considered, the EMCC values found using formulae (4.1) and (4.4) agree.
The dependence of the dimensionless electric potential �* = �/Vb on the thickness coordinate x3 is shown in Fig. 4.

It can be seen that the electric potential varies quadratically with the thickness, which is in good agreement with a
numerical calculation using the three-dimensional theory.2

The variation of the dimensionless stresses

with the thickness of the bar in the cross section of the bar x1 = l/2 close to the first resonance (�2 = 1.86) is shown in
Fig. 5. It can be seen that the stress �11* varies linearly with the thickness while �31* varies quadratically; moreover
the stress �11* is considerably greater than the stress �31*.

Fig. 4.
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Fig. 5.

5.3. Simultaneous longitudinal and transverse vibrations of the bar

If the bar simultaneously performs forced longitudinal and transverse vibrations, then, as is well-known, the complete
problem can be split into a plane problem for the longitudinal vibrations and a bending problem for the transverse
vibrations. All the required quantities are determined by simple addition of the quantities found from the solutions of
the plane problem and bending problem. The exception is the EMCC which cannot be found by simple addition.

Substitution of the total stresses, strains and electrical quantities into the formulae for the energy (4.1) leads to the
following formulae for energy and the EMCC

(5.25)

where Ud
b , Ush

b , Ud
p and Ush

p are the values calculated for unit electrical load exciting transverse vibrations (with

subscript b) and longitudinal vibrations (with subscript p) of the bar. Ud
b and Ush

b are given by formulae (5.23) and Ud
p

and Ush
p are given by formulae (5.16).

The results of a calculation of the EMCC as a function of the dimensionless frequency parameter �1 for a three-layer
bar with layer thicknesses h1 = h2 = 5 × 10−4 m and different values of 	 are presented in Fig. 6. If 	 = 50, the graph of
the EMCC coincides with the corresponding graph of the EMCC for longitudinal vibrations shown in Fig. 2b; if 	 = 3,
the plot of the EMCC coincides with the plot of the EMCC for transverse vibrations (Fig. 4). When 	 = 15 both the
longitudinal and transverse vibrations may affect the values of the EMCC.

Fig. 6.
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